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SUMMARY

Electrical response measurements from 10 Hz to 100 kHz between 120 and 540 °C were made on
potassium-silicate glasses with alkali oxide contents of 2, 3, 5, and 10 mol%. Low alkali content glasses
were chosen in order to try to reduce the Coulombic interactions between alkali ions to the point that
frozen structural effects from the glass could be observed. Conductivity and electrical relaxation responses
for both annealed and quenched glasses of the same composition were compared. Lower DC conductivity
(6pc) activation energies were measured for the quenched compared to the annealed glasses. The two
glasses with the lowest alkali contents exhibited a non-Arrhenius concave up curvature in the log op¢
against 1/T plots, which decreased upon quenching. A sharp decrease in o was observed for glasses
containing K,O concentrations of 5 mol% or less. The log modulus loss peak (M") maximum frequency
plots against 1/T all showed Arrhenius behavior for both annealed and quenched samples. The activation
energies for these plots closely agreed with the o activation energies. A sharp increase in activation
energy was observed for both series as the potassium oxide concentration decreased. Changes in the elec-
trical response are attributed to structural effects due to different alkali concentrations. Differences

between the annealed and quenched response are linked to a change in the distribution of activation
energies (DAE).

INTRODUCTION

A great deal of interest has been expressed recently in developing a fast ion conductor material to act
as an electrode for molten salt fuel cell applications (ref. 1). A better understanding of the ionic diffusion
in disordered solids and the electric relaxation or dispersion of the permittivity as a function of frequency
is necessary to aid in this type of research. One way to provide some insight into the conduction mechan-

ism associated with these materials is to study the AC behavior of simple binary systems such as alkali-
silicate glasses.

Theories used to describe electrical relaxation may be categorized as either systems that exhibit time-
dependent transition rates (TDTR) for charge carrier migration from site to site in the solid (refs. 2
and 3) or those based on a distribution of transition rates (DTR) which characterize charge carrier trans-
port on a disordered potential energy surface (refs. 4 to 7). Theories based on the TDTR are assumed to
arise from Coulombic interactions occurring between migrating charge carriers. Since the charge carriers
can only move cooperatively, a perturbation such as an applied step field would be followed by correlated
motion of carriers that is progressively damped yielding the time dependency (ref. 2). In comparison,



theories based on a DTR have been shown, through the use of a continuous time random walk (CTRW)
approximation (ref. 8), to result in a frequency dependent conductivity, o(w), where w is the angular
frequency. The o(w) is related to a distribution of activation energies (DAE) which results in a distribu-
tion of relaxation times (DRT) given by g(r) (refs. 7, 9, and 10). Both theories correctly predict the fre-
quency response of the real portion of the conductivity, ¢(w)’, characterized by an approximate power
law behavior (ref. 7):

o(w)’ = opc + A" (1)

where oy is the DC conductivity, A is constant and n is the slope of the frequency dependent portion of
the curve having a value within the interval 0 <n < 1.

By increasing the charge carrier interionic distances through the use of low alkali content glass sys-
tems, one may decrease the Coulombic interaction between charge carriers which is assumed to yield the
TDTR. The observed AC response should then be dominated by the DAE for conduction resulting from
the disordered potential energy surface. By measuring the AC response of quenched samples after their
annealed AC properties have been measured, the effects of structural changes within the glass, which
potentially may alter the DAE, can be observed without changing the glass composition. A similar study
on the AC response of both annealed and quenched binary silicate glasses by Boesch and Moynihan (ref. 11)
focused on both a potassium and sodium-silicate glass, but at alkali contents of 30 mol%. Yoshiyagawa
(ref. 12), and Yoshiyagawa and Tomozawa (ref. 13) also examined annealed and quenched lithium-silicate
glasses with alkali concentrations between 30 to 60 mol%. Both studies found little change in the AC
properties upon quenching. By only focusing on glasses with high alkali concentrations, any potential
change in the DAE may have been over shadowed by Coulombic interactions between the alkali ions.

Kelly et al. (ref. 14) have shown that the Haven ratio for a sodium-silicate glass does not start to
approach unity until alkali concentrations drop below 5 mol%. In relating correlation effects to the theory
of irreversible thermodynamics, the Haven ratio, Hp, may be written as (refs. 15 and 16):

C L LI _C ‘L -
Hp = A¥A A A*TATA (2)
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where C, and C,+ are the concentrations of host and tracer ions respectively and Lij are the Onsager
coefficients. For the condition, C, — C,+ — 0, the off-diagonal coefficients, L ,4,, approach zero since
the interaction between the host flux and the tracer flux diminishes. As a result of these dilute conditions,
Hy approaches unity. This indicates that the resulting electrical conductivity may be related to the
charge carrier mobility of a dilute system with negligible interionic Coulombic and blocking interactions.
The remaining serial correlation effects may be attributed to the disordered topology of the potential
energy landscape associated with the rigid silicon-oxygen network. The effective elimination of the inter-
ionic interaction effects should allow the experimenter to probe this potential energy landscape by way of
electrical relaxation measurements such as impedance spectroscopy. In addition, if the dilute system char-
acterized by Hp = 1 is accepted as an approximation of a single particle system, all correlation may be
considered to be self-serial correlation effects (ref. 17). This condition now provides experimental access to
the elusive geometrical correlation factor, f, which may be given by:

_ o(0)
f= (3)
()




where o(0) and o(«) are the DC and high-frequency limiting conductivities, respectively. Data from Kelly
et al. (ref. 14) suggest that alkali concentrations must be <5 mol% before the Coulombic interactions of

the alkali begin to decrease to the point that the potential energy surface due to the glass structure begins
to dominate the conduction process.

Calculations by Martin (ref. 18) on alkali ion-ion separation distances show that ions begin to no
longer occupy adjacent interstitial positions at concentrations of <7 mol%, which is in agreement with
Kelly’s work on Haven ratios (ref. 14). By concentrating on glasses with alkali concentration of less then
10 mol%, it may be possible to induce changes in the DAE enough to affect the AC response. In addition,
only a small amount of AC response data on low alkali silicate glasses currently exists. The purpose of
this initial study was to investigate AC conductivity and complex modulus behavior over a wide tempera-
ture and frequency range for potassium-silicate glasses with alkali concentrations from 2 to 10 mol%.

EXPERIMENTAL PROCEDURE

Sample Preparation

Glgisses were prepared in 30 g batches using 99.99 percent pure potassium carbonate’ and ground
silica . Binary compositions of the system xK,0-(100-x)SiO, where x was equal to 2, 3, 5, and 10 mol%.
Herein, the specific compositions will be referred to as xKS where KS corresponds to potassium-silicate
and ‘x’ corresponds to the concentration of potassium oxide in mole percent in the glass. Each batch was
dry mixed to increase homogeneity and then calcined at 950 °C for 4 hr in a platinum-3 percent rhodium
crucible. The calcined powder was then ball milled for 3 hr to —325 mesh powder in porcelain jars using
alumina media to further homogenize the batch before melting. Glasses were then melted in the same
platinum-3 percent rhodium crucibles using a molybdenum-disilicide furnace between 1550 and 1670 °C.
Glass batches were held at temperature for up to 24 hr to minimize bubbles before roughly annealing at
550 °C. The 2 and 3 mol% K,O samples still contained bubbles of 0.5 mm in diameter or less after this
time, which corresponded to less than 1 vol%. Given the slow rate of fining at 1670 °C for these composi-
tions and the potential volatilization of the alkali, all of the glasses were removed after 24 hr of melting.
Chemical analysis using a plasma analysis technique was used to confirm potassium concentrations and to
determine the level of any contaminates, including alumina, soda, and lithia. Alumina concentrations

never exceeded 0.1 mol% while alkali contaminates were in the ppm level. Table I summarizes the potas-
sium oxide results.

Low alkali content silicate glasses have been reported to phase separate given the appropriate condi-
tions and follow the trend of lithia being the most susceptible and cesium being the least susceptible (i.e.,
Li > Na > K > Rb > Cs) (ref. 19). Examination of glass samples with back scattered electron (BSE)
and electron-microprobe analysis showed no evidence of phase separation for these compositions. All glass
samples were stored in a vacuum desiccator after annealing to reduce water absorption.

Samples for electrical measurements were obtained by coring samples from the crucibles using a 5/8-in.
diamond coring bit. Cylindrical samples of 1.2 cm in length were obtained using this technique. Cored
samples then underwent a final annealing cycle, an example of which is shown in figure 1. Approximate
annealing temperatures were chosen based on published viscosity data for potassium silicate glasses
(ref. 20). Disks with parallel faces were cut from the annealed cores using a diamond wafering saw. The
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faces of the samples were then polished with 600 grit SiC before platinum electrodes were sputtered in a
two electrode configuration. Kerosene or lapping oil was used in place of water whenever possible during
all stages of sample preparation to minimize any leaching of the alkali from the samples.

Quenched samples were prepared from annealed samples that had completed comprehensive impedance
analysis. This eliminated the possibility of other factors (e.g., sample size) from contributing to dissimi-
larities in the measured data between samples with different thermal histories. The platinum electrode
material was first removed with 600 grit SiC before the sample was placed into a furnace at 800 °C. After
20 min, the sample was quickly removed, placed on tabular alumina and allow to air cool to room tem-
perature. Examination of the sample after quenching under polarized light showed a typical birefringence
pattern for a quenched glass. After repolishing on 600 grit SiC, platinum electrodes were reapplied.

Density measurements were made on both annealed and quenched specimens using the Archimedes

technique. Again, lapping oil was used in place of water to reduce alkali leaching. The values, reported in
Table I, have a relative precision of +0.002 g/ cm?.

Impedance Measurements

Impedance measurements were made using a Schlumberger SL1260 Impedance/Gain Phase Analyzer
between 10 Hz and 100 kHz in the temperature range of 120 to 550 °C, as applicable. Fifty points per
decade were taken for each sample during which a null file, created at 200 °C, was used to remove any
contributions from the measurement system from the total response. All measurements were made using a
2-V test signal and a 1-sec time delay between successive points. A 3-sec time integration was used for
each point to minimize measurement error. Test specimens were placed in an Inconel cell with spring
loaded platinum electrodes and leads. Circular Inconel shields placed near the sample diminished any
induced effects from the electrical windings in the furnace. A Pt-Pt10Rh thermocouple, placed adjacent to
the specimen, was used for all sample temperature measurements. The test cell was positioned inside a
mullite tube that was open at one end and located inside a clam-shell furnace. A dry N, atmosphere was
used to ensure the integrity of the electrodes and to reduce water absorption by the specimen.

Given the measured complex impedance, the complex modulus M’ and admittance Y' can be calcu-
lated from the equations (ref. 21):

Yy =y -iy =21 (4)
z*

M* =M’ — iM" = iwk*,C | (5)

where i is equal to v—1, €, is the permittivity of free space and G, the geometric factor, is equal to the
area of the electrode surface’s divide by the sample thickness (A/L). The real portion of the AC conduc-
tivity is the real part of the admittance divide by the geometric factor. It is thus very simple to switch
from one immittance level to another, keeping in mind that it is still the* same data just being viewed at a
different level. Since each immittance level has some drawbacks (e.g., M plots tend to suppress low fre-

quency information while z’ suppresses high frequency information) it is generally best to examine the
data at several different levels.



Multiple experiments were conducted to confirm the repeatability of the AC properties as determined
by this experimental procedure. Several samples with thicknesses between 0.85 and 1.75 mm were cut
from the same glass core and measured with negligible differences. Duplicate samples from different glass
batches were also compared with similar results. Finally, a glass sample was purposely prepared that had
a high concentration of bubbles. The measured properties of this sample was then compared to a bubble
free sample to verify that the bubbles have negligible effect on the AC properties of the glasses. Summary
admittance and modulus plots of several of these samples are given in figure 2.

By using sputtered platinum electrodes, polishing the sample surfaces to 600 grit and using a small
test signal, no electrode polarization effects were observed except for the 10KS sample at higher tempera-
tures. The onset of electrode polarization can easily be determined by an almost exponential increase in

the capacitance data at low frequencies. Data points believed to include electrode polarization effects were
discarded from the data sets.

RESULTS

Conductivity

The real part of the admittance curves all exhibit the form of the response typical of other alkali sili-
cate glasses (refs. 10 to 13). Examples of the real portion of typical conductivity plots are shown in fig-
ure 3 for the 3KS quenched and annealed glass at three different temperatures. At low frequencies the
admittance is frequency independent while at higher frequencies it follows an approximate power law type
of behavior. This type of response, characteristic of ionic conductors (refs. 10 to 13, and 22), can be repre-
sented by the equation (1). By extrapolating the frequency independent portion of the admittance curves,
the o may be calculated. Figure 4 shows the log o plotted against 1 /T for both the quenched and

annealed glasses while figure 5 shows all the annealed data on a single plot. These types of plots are
based on the Arrhenius equation (ref. 23):

opc = A exp—E“/RT (6)

where A is a constant, E_ is the activation energy for e, R is the ideal gas constant, and T is the abso-
lute temperature. For the annealed glasses, both the 5KS and 10KS compositions closely follow an Arrhenius
type behavior while the two lower alkali content glasses display slight concave up curvatures in the lower
temperature region. The degree of curvature appears to increase as a function of both decreasing temperature
and alkali content. A small amount of upward curvature in log oy versus 1 /T plots has been reported
previously (ref. 10). Upon quenching, all of the plots for the four glass compositions shifted to higher
conductivity values with the magnitude of the shift increasing with increasing alkali concentration. In
addition, the degree of curvature in the 2KS and 3KS plots decreased slightly.

By plotting the log o7y as a function of potassium content, as shown in figure 6(a), two different approx-
imately linear regions are observed. The o changes very rapidly with increasing potassium oxide content
up to approximately 7 to 10 mol%, at which point a much lower rate of increase occurs. This change in
slope appears to occur over a relatively short range of alkali content. Data from work by other authors
(refs. 11, and 24 to 29) are also shown in figure 6(a) and demonstrate good agreement with this investigation.



Complex Modulus

The imaginary part of the modulus as a function of frequency at two different temperatures is shown
in figure 7 for the 2KS and 10KS samples, quenched and annealed. All plots exhibit the characteristic
increase in M’ as a function of frequency and the occurrence of a loss peak in the M”" data, commonly
referred to as conductivity relaxation peak (refs. 11 and 23). The plots for the imaginary part of the
electrical modulus against log frequency exhibit a maximum at wr, = 1, where 7, corresponds to the
reciprocal of the frequency at the modulus loss peak maximum. The shape of the loss peak is very broad
compared to electrical relaxation peaks produced by materials with a single relaxation time or Debye
response (ref. 11). These type of broad loss peaks have been attributed to a distribution of relaxation
times (refs. 7, 11, and 22). The loss peaks are all asymmetric with the same skewing towards the high
frequency end of the spectrum. The modulus loss peak has been previously found to follow an Arrhenius
behavior similar to that followed by o based on the equation:

M*(w) = Mg exp_E: /RT (7

Plots of the log modulus loss peak maximum as a function of 1/T, given in figure 8, all follow Arrhenius
behavior, even for the two lower alkali content glasses. This is in contrast to the upward curvature observed
in the log oy versus 1/T plots for the 2KS and 3KS plots. Also similar to the log o versus 1/T plots,
a slightly larger gap between the annealed and quenched lines is observed for the higher alkali content
glasses compared to the lower alkali content glass.

opc and M” Peak Activation Energies

Activation energies from both the annealed and quenched plots for the o and M" plots
(£0.75 Kcal/mol), shown in figure 9(a) as a function of alkali content, exhibit close agreement when
comparing values for oy against M” for either the annealed or quenched samples. However, when com-
paring annealed against quenched activation energies for either oy or M”, the quenched terms were
observed to be approximately 2.5 Kcal/mole lower than the annealed terms. The magnitude of the
decrease in the activation energies upon quenching appears to be independent of the alkali concentration.

Figure 9(a) also shows that the activation energy for op is larger for the lower alkali content glasses
and decreases almost linearly for increasing alkali concentrations up to the value for the 5KS sample, at
which point the slope decreases. In figure 9(b), activation energy values for an expanded range of alkali

concentrations from other authors (refs. 24, 27, and 30) are included and show good agreement with this
study.

Glass Density

Density values for the annealed glasses all closely agreed with values from previous authors (refs. 24
to 26). Quenching resulted in a 1-percent decrease in the measured density, on average. Slightly smaller

changes in density were measured for the lower alkali content glasses in comparison to the higher alkali
content glasses.



DISCUSSION

The upward shift in the log o and M* plots as a function of 1 /T upon quenching is the result of the
pre-exponential term from the two Arrhenius equations (egs. (6) and (7), respectively) increasing. The
magnitude of the shifts as a function of alkali concentration can be linked to the glass transition tempera-
ture, Tg, for the different compositions. The Tg decreases as the alkali content of the glasses increases
which results in a larger AT, which is given by:

AT = Toyench — T (8)

These increasing AT’s as a function of increasing alkali concentration cause larger structural differences
between the annealed and quenched glasses for the higher alkali content glasses when compared to the
lower alkali content glasses.

In similar studies by Boesch and Moynihan (ref. 11) and by Yoshiyagawa and Tomozawa (ref. 13)
investigating high alkali content (~30 mol%) silicate glasses with different thermal histories, the only
observed change in the log o versus 1 /T plots was an analogous increase in the pre-exponential term
upon quenching. No change in the shape or slope of the quenched curves in comparison to the annealed
curves was observed. For the 2KS and 3KS glasses studied here, quenching decreased the amount of non-
Arrhenian curvature measurably above that observed for the annealed plots when compared over the
same temperature range.

Given that the admittance curves at these low temperatures have just reached the frequency indepen-
dent region, it may be argued that ¢(w) is still decreasing with frequency. If this is correct, it is not pos-
sible to extrapolate the curves without getting an erroneously high value for o). However for all the
points measured, the modulus loss peak, which has previously been linked to the onset of the frequency
independent portion of the admittance curve (ref. 23), has already occurred. As a precaution, all opc
values were verified by using a least squares arc fit on the complex impedance plots, an example of which
is shown in figure 10. Most circular fits were similar to the one depicted in figure 10 in that the intercept
on the real axis, which represents the resistivity, agreed with the extrapolated values. Some of the com-
plex impedance plots at the lower temperatures deviated from semicircles when the real part of the
impedance increased at a greater rate than the imaginary part at low frequencies. This resulted in a small
tail on the low frequency end of the semicircle plots and resulted in slightly lower o values to be
reported. Generally the error fell within temperature measurement deviations and was less than the size
of the data points on the plots given in figure 4. For the cases where the difference in oy was larger
than any error introduced by small temperature deviations, the o point was replaced by values from
the least squares semicircle fits.

One potential explanation for the curvature observed in the 2KS and 3KS log op plots is based upon
some recent Monte Carlo simulations in diffusion (ref. 31) in which a Gaussian distribution for saddle
point energies combined with a single stable point or site energy was used to calculate the diffusion coeffi-
cient, D. It was found that the Gaussian distribution for the saddle point energies resulted in higher than
expected diffusion coefficients at lower temperatures. This resulted in a concave up curvature in the log D
against 1/T plot, very similar to the curvature observed in figure 4. When similar distributions were used
for both saddle point and stable point energies, Arrhenius behavior was observed and was due to a com-
pensation effect between the saddle and site energy distributions. This suggests that at higher alkali con-
centrations, the saddle and stable point energies have very similar distributions. As the alkali content
decreases, the Coulombic interactions between the alkali diminish and the potential energy surface is now
dominated by the frozen structure. The reduced Coulombic interactions from neighboring alkali ions



could potentially change the distribution of either the saddle or stable point energies resulting in the
observed curvature for the log oy plot. Since changing the thermal history of a glass is known to have
structural effects, quenching could further change the statistical landscape of the potential energy surface.
The larger resulting deviation between saddle and stable point energy distributions could then generate
the observed changes in the curvature.

Another possible explanation for the curvature in the o Arrhenius plot is that the pre-exponential
term and/or the activation energy term in equation (1) is temperature dependent. Work by Syed et al.
(ref. 32) has suggested that any temperature dependency of the pre-exponential term is very weak and
that it is best that o data be fit to the Arrhenius equation with no temperature dependency in the pre-
exponential term. A temperature dependency of the activation energy term would imply that some type
of structural change is occurring in the glass. This type of change would be more likely to manifest itself
in the higher temperature portion of the o plot rather than the observed low temperature region. How-
ever, changes in bond angles and other similar structural alterations commonly associated with thermal
expansion could potentially give the activation energy term a temperature dependency.

The sudden change in slope for the o plotted against potassium oxide content occurs in the same
alkali concentration region that Kelly et al. (ref. 14) showed that the Haven ration began to approach
unity. The change in the two plots at coinciding alkali concentrations suggests that the approximately
5 to 7 mol% alkali concentration for potassium-silicate glasses corresponds to the point where the diffus-
ing alkali begin to impede each other. For alkali concentrations greater than 7 mol%, occupation of avail-
able nearest neighbor site begins to increase. In order for an alkali to jump to a new site, a nearest neighbor
alkali atom may also have to jump to open an adjacent site. Due to the high site occupancy, the prob-
ability of an alkali jumping back to its original site is also much higher. As a result, the o increases at
a slower rate as the portion of alkali ions contributing to o decreases. This behavior is related to the
ionic transport phenomena associated with the conductivity correlation factor (ref. 34), f;, which reflects
serial correlation effects of the entire system. For alkali concentrations greater than 5 to 7 mol%, the
percolation efficiency of all charge carriers is apparently reduced due to their collective interaction result-
ing in a reduction of the net flux of charge carriers.

As the alkali concentration decreases below 7 mol%, the distance between nearest neighbor alkali ions
increases. However, the lower alkali concentrations also result in fewer nonbridging oxygen atoms (NBO)
and additional glass defects that aid in the conduction process by creating more open glass structures.
The number of percolation paths through the glass also decreases while the average energy on each path
increases as indicated by the higher oy, values for 2KS and 3KS. As a result, the activation energy
increases while o sharply decreases as the charge carrier mobility decreases. This type of interpretation
is consistent with the decrease in Haven ratio as a function of alkali content measured for alkali-silicate
glasses by Kelly et al. (ref. 14).

SUMMARY OF CONCLUSIONS

Initial findings indicate that both the o and M” activation energies vary as a function of thermal
history for glasses with low potassium oxide concentrations. The non-Arrhenius behavior observed for
opc for the 2KS and 3KS glasses may be linked to changes in the DAE. The sharp decrease in o with
decreasing potassium content is believed to be due to the increasing distance between NBO and other
defects in the glass structure which results in fewer percolation paths for conduction.
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TABLE I.—ALKALI CONCENTRATION

AND GLASS DENSITY

(£0.002 g/cm®)

Glass composition 2KS 3KS 5KS 10KS
Potassium oxide concentration® 1.7 2.8 4.4 9.4
(£0.5 mol%)
Annealed density 2.223 2.234 2.258 2.307
(£0.002 g/cm®)
Quenched density 2.209 2.219 2.241 2.289

*Trace elements were all less than 100 ppm, including all other alkali.
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Figure 1. —Typical annealing schedule used before preparing sam-
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electrical measurements. A 675 °C hold was used for the

2KS and 3KS samples, a 650 °C hold for the 5KS and a 625 °C

hold for

the 10KS samples.
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tioned between measurements.
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(b) Imaginary medulus piot for 2KS samples from the

same glass core but with different thickness (1.67 and
1.88 mm) which resulted in the different geometric
values, G (15.8 and 8.28 respectively).
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Figure 2c.—Imaginary modulus plot for two SKS glasses,
both at 368 °C. The first samples is free of all bubbles
while the second contains a small fraction <1 vol% of
the same size observed in the 2KS and 3KS samples.
The small shift in the maximum loss peak frequency
is likely due to small compositional differences between
the two glasses.
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